

1. 40 points.

- (a) Identify the following parameters as intensive (**I**) or extensive (**E**):

- i. temperature **I**
- ii. entropy **E**
- iii. mass **E**

- (b) What is $\mathcal{P}(J = 0)$ for HF at 298 K if $q_{\text{rot}} = 9.88$? **Solution:**

$$\mathcal{P}(J = 0) = \frac{(2J + 1)e^{-BJ(J+1)/(k_B T)}}{q_{\text{rot}}} = \frac{1}{9.88} = \boxed{0.101.}$$

- (c) Calculate the partition function of carbon dioxide at 400 K, based on the energies and degeneracies given in the table. **Solution:** Use $k_B = 0.6950 \text{ cm}^{-1} \text{ K}^{-1}$ to calculate $g \exp[-\epsilon_{\text{vib}}/(k_B T)]$, and then add all the values up:

state	g	$\epsilon_{\text{vib}} (\text{cm}^{-1})$	$g \exp[-\epsilon_{\text{vib}}/(k_B T)]$
(0,0,0)	1	0	1
(0,1,0)	2	667	0.182
(0,2,0)	3	1334	0.025
(1,1,0)	2	2000	0.002
total	$q =$	1.21	

- (d) What is the number of equipartition degrees of freedom in sulfur hexafluoride (SF_6)

- i. when vibrations are *not* included? **Solution:** SF_6 is non-linear, so there are 3 translations and 3 rotations, so $N_{\text{ep}} = 3 + 3 = \boxed{6}$
- ii. when vibrations *are* included? **Solution:** Now add $2 \times (3 \cdot 7 - 6) = 30$ vibrational contributions, so $N_{\text{ep}} = 3 + 3 + 30 = \boxed{36}$

2. A system consists of N *distinguishable* particles is energized by M photons, each with energy ϵ_0 . Each particle may absorb any number of photons, and many particles may absorb the same number of photons. (However, the photons are *not* distinguishable.)

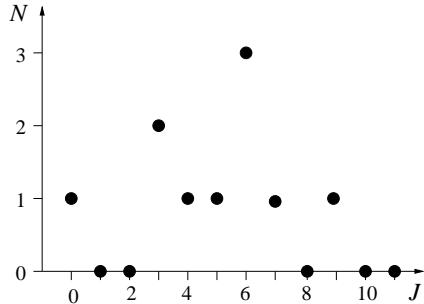
- (a) Write an expression for the ensemble size Ω in terms of the total energy $E = M\epsilon_0$. **Solution:** The number of ways of putting M photons into N particles is N^M , but then we divide by $M!$ because we don't care about the order in which the photons enter the system:

$$\Omega = \frac{N^M}{M!} = \boxed{\frac{N^{E/\epsilon_0}}{\left(\frac{E}{\epsilon_0}\right)!}}$$

- (b) Find a usable expression for S assuming N and M are large. **Solution:** The warning to make the equation usable for large values is to remind us to use Stirling's approximation to make $\ln M!$ tractable:

$$\begin{aligned} S &= k_B \ln \Omega = k_B \ln \frac{N^M}{M!} = k_B [M \ln N - M \ln M + M] \\ &= M k_B [\ln N - \ln M + 1] = M k_B \left[\ln \left(\frac{N}{M} \right) + 1 \right] \end{aligned}$$

3. Based on the values shown in the plot below, estimate (a) the Gibbs entropy of the system in SI units and (b) the partition function at this temperature.



Solution: There are ten particles, so the probabilities $\mathcal{P}(J)$ are approximately the number of particles in state J divided by 10, so $J = 3$ appears to have a probability of roughly 2/10, $J = 6$ has a probability about 3/10, and 5 states have probability of about 1/10. We then use these values to estimate the Gibbs entropy:

$$\begin{aligned}
 \text{(a)} \quad S &= -Nk_B \sum_{J=0}^{\infty} \mathcal{P}(J) \ln \mathcal{P}(J) \\
 &= -10(1.381 \cdot 10^{-23} \text{ J K}^{-1}) \left[(5) \frac{1}{10} \ln \left(\frac{1}{10} \right) + \frac{2}{10} \ln \left(\frac{2}{10} \right) + \frac{3}{10} \ln \left(\frac{3}{10} \right) \right] = \boxed{2.53 \cdot 10^{-22} \text{ J K}^{-1}}.
 \end{aligned}$$

(b) The partition function is roughly the number of occupied states at this temperature. Almost all of the particles in this plot are in states $J \leq 7$. Taking the $2J+1$ degeneracy into account for J from 0 to 7, q is probably less than

$$1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = \boxed{64}.$$

We could also use the $J = 0$ population, which is 1/10 of the total population, to estimate q :

$$\mathcal{P}(J=0) = \frac{(2J+1)e^{-BJ(J+1)/(k_B T)}}{q} = \frac{1}{q} \approx \frac{1}{10} \quad q \approx \boxed{10}.$$

Because this result is based on only one particle, it is not very accurate, and almost certainly too low. A value of $q = 10$ would suggest that it is unlikely many of the particles would be found at $J > 4$ (because there are more than 10 states in $J \leq 4$), but most of the particles are at $J > 4$. Answers in this range would be accepted. The actual q in this simulation was equal to 30.

4. Consider neutrons bouncing on a surface in Earth's gravitational field. The potential energy is mgz , where $m = 1,675 \cdot 10^{-27} \text{ kg}$, $g = 9.81 \text{ m s}^{-2}$, and z is the height. Find an approximate equation for the average total energy per neutron as a function of the temperature. **Solution:**

$$\begin{aligned}
 \langle \epsilon \rangle &= \left\langle \frac{m}{2} v_z^2 \right\rangle + \langle mgz \rangle = \frac{m}{2} \langle v_z^2 \rangle + mg \langle z \rangle \\
 \frac{m}{2} \langle v_z^2 \rangle &= \frac{1}{2} k_B T \quad \text{by equipartition} \\
 mg \langle z \rangle &= mg \left[\frac{\int_0^\infty z e^{-mgz/(k_B T)} dz}{\int_0^\infty e^{-mgz/(k_B T)} dz} \right] \\
 mg \langle z \rangle &= mg \frac{[(1!)/(mg/(k_B T))^2]}{[(0!)/(mg/(k_B T))]} = mg \left(\frac{k_B T}{mg} \right) = k_B T \quad \int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \\
 \langle \epsilon \rangle &= \frac{1}{2} k_B T + k_B T = \boxed{\frac{3}{2} k_B T}.
 \end{aligned}$$