
Chemistry 410B Final Exam Part 1 Fall 2016
Solutions

1. 60 pts

(a) Calculate the temperature at which 2.00 mol of an ideal gas occupies 40.0L at a pressure of

1.50 bar. Solution:

PV = nRT T =
PV

nR
=

(1.50)̄(40.0 L)

(2.00mol)(0.083145 bar LK−1mol−1)
= 361K.

(b) According to the equipartition principle, what is the molar heat capacity at constant pressure

(in SI units) for tetrachloroethene (C2H4) in the limit that kBT is less than the lowest

vibrational constant.

Nep = 3 + 3 + 2× (3 · 6− 6) = 30

CPm = CV m +R = R

[

30

2
+ 1

]

= 16R = 133.0 JK−1mol−1.

(c) The mean free path of N2 at 1.00 bar and 288K is 790 Å. What is the mean free path at

0.020bar and 298K?

λ2 =
1√
2ρ2σ

=
RT2√

2NAP2σ
=

R(298/288)T1√
2NA(0.020/1.00)P2σ

=
(298)(1.00)

(288)(0.020)
λ1 = 4.09 · 104 Å.

(d) The Maxwell-Boltzmann distribution for CO at 300K is labeled below. Which of the curves

a–d gives the distribution for the Maxwell-Boltzmann distribution of C2O2 at 150K? Solu-

tion: a. The v value of the curve’s peak (like all of the characteristic speeds) is proportional

to
√

T/m, so if T2 = T1/2 and m2 = 2m1, then the peak position should decrease by a factor

of
√

(1/2)(1/2) = 1/2.

(e) Which of the following approximations did we use to obtain the van der Waals equation for

non-ideal gases starting from the intermolecular potential energy function? There may be

more than one correct answer.

i. The magnitude of the repulsive potential energy is less than the thermal energy. N

ii. The magnitude of the attractive potential energy is less than the thermal energy. Y

iii. The total potential energy of the N molecules is the sum of all the pair potentials. Y

iv. The potential energy at interaction distances less than RLJ is essentially infinite. Y

v. The integral of the product of N(N − 1)/2 integrands can be set equal to the a one-

dimensional integral raised to the N(N − 1)/2 power. Y

(f) Complete the Maxwell relation which is started below:

−
(

∂S

∂n

)

T,V

=

[

∂

∂n

(

∂F

∂T

)

V,n

]

T,V

=

[

∂

∂T

(

∂F

∂n

)

T,V

]

V,n

=

(

∂µ

∂T

)

V,n

.

2. Shown below is the ensemble used in Fig. 2.5, showing three fluorine atoms, one of them in

an excited electronic state, in four different translation states. The electronic energy of the one

excited fluorine atom is 404 cm−1 above the ground state.
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(a) Calculate the Boltzmann entropy of this system in SI units. Solution:

Ω = 12 SBoltzmann = kB lnΩ = (1.381·10−23 JK−1) ln(12) = 3.43 · 10−23 JK−1.

(b) Calculate the Gibbs entropy of this system in SI units. Solution: There are two degrees of

freedom: translational and electronic. There are only two electronic states, with probabilities

of P (J = 3/2) = 2/3 and P (J = 1/2) = 1/3, and there are four translational states each

with a probability of 1/4. We add these two contributions to the entropy to get the total

entropy for the ensemble. Using J to label the electronic states and k to label the translational

states, we have

SGibbs = −NkB
∑

i

P (i) lnP (i) = −NkB





3/2
∑

J=1/2

P (J) lnP (J) +

4
∑

k=1

P (k) lnP (k)





= −3(1.381 · 10−23 JK−1)

[

1

3
ln

1

3
+

2

3
ln

2

3
+ 4

1

4
ln

1

4

]

= 8.38 · 10−23 JK−1.

(c) Using the energy and entropy, estimate the temperature of this system. Solution: The only

lower energy state is the one where all three particles are in the J = 3/2 electronic state,

and that leaves four possible (degenerate) translational states. For that state, Ω = 4 and

SBoltzmann = 1.91 · 10−23 JK−1. Using the Boltzmann entropy, this predicts a temperature

of

T ≡
(

∂E

∂S

)

V,N

≈ δE

δS
=

(404 cm−1)(1.986 · 10−23 J/ cm−1)

(3.43− 1.91) · 10−23 JK−1 = 530K.

3. If dρ/dt = Dρ/a at a point Z0 in our system, where a is a distance, then find an expression for

the flux at that point. Solution:

dρ

dt
= D

d2ρ

dZ2
= D

ρ

a
ρ = ρ0e

−

√
D/aZ

d2ρ

dZ2
=

ρ

a

J(Z0) = −D

(

dρ

dZ

)
∣

∣

∣

∣

Z0

= −D

∫ Z0

0

d2ρ

dZ2
dZ = −D

∫ Z0

0

ρ

a
dZ = −Dρ0

a
e−

√
D/aZ

4. A gas-phase sample of a diatomic molecule is placed in a chamber at 298K. Spectroscopy deter-

mines the populations of vibrational and rotational states graphed below. Use the data to roughly

estimate the values of the rotational and vibrational constants. Solution: We can estimate q

from the number of states occupied, and then use the expressions for qrot and qvib to estimate

the rotational and vibrational constants. The rotational levels have significant population up to

roughly J = 100. Because each J level has 2J + 1 states, that’s
∑100

J=0(2J + 1) = (1002) = 104

rotational states. So we set qrot ≈ 104. On the other hand, only 1 or 2 vibrational states see

significant population, so qvib ≈ 1.5.

qrot =
kBT

B

B =
kBT

qrot
≈ (0.6950 cm−1K−1)(298K)

104
= 0.0207 cm−1.

qvib =
1

1− e−ωe/(kBT )

ωe = −kBT ln

(

1− 1

qvib

)

= −(0.6950 cm−1K−1)(298K) ln

(

1− 1

1.5

)

= 227 cm−1.
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The populations are based on calculations for IBr, with Be = 0.0559 cm−1 and ωe = 268.71 cm−1.

Clearly, a broad range of answers is possible.

5. Imagine a blackbody composed of rigid, rotating molecules, so that the emission arises from

rotational transitions rather than vibrational transitions. To find the average energy 〈ǫrot〉 (in

order to get its contribution to ρrad), we must use a sum over all the states, rather than an integral

(otherwise we have the same problem as in the case of classical vibrations). Write 〈ǫrot〉 for a

linear molecule as a power series in x, where x = e−B/(kBT ). Treat qrot as a constant that can be

factored out. Solution:

〈ǫrot〉 =
∞
∑

J=0

P (J) ǫrot(J) =

∞
∑

J=0

[BJ(J + 1)]
(2J + 1)e−BJ(J+1)/(kBT )

qrot

=

∞
∑

J=0

[BJ(J + 1)]
(2J + 1)(e−B/(kBT ))J(J+1)

kBT/B

=
B2

kBT

∑

J

= 0∞J(J + 1)(2J + 1)xJ(J+1)

6. Sodium chloride is a relatively compressible solid, and has an internal pressure
(

∂E
∂V

)

T,n
=83kbar,

a density of 2.16 g cm−3, and a coefficient of thermal expansion 39.8 ·10−6K−1. Use these data to

calculate the total work w in kJ when 50.00 g of solid NaCl is warmed from 285.0K to 335.0K

at a constant pressure of 1.00bar. Assume the molar heat capacity CPm = 50.50 JK−1mol−1 is

constant over this temperature range. Solution: The idea is that NaCl (unlike the ideal gas) has

a non-zero internal pressure, so work has to be done not only on the surroundings but also within

the substance itself to allow for the expansion. If the internal pressure is non-zero, then it takes

energy even to expand against a vacuum.

∆V = V α∆T =

(

50.0 g

2.16 g cm−3

)

(39.8 · 10−6K−1)(50K) = 0.215 cm3

w = −
(

∂E

∂V

)

T,n

∆V − Pmin∆V = −
[

(

∂E

∂V

)

T,n

+ Pmin

]

∆V

= −(83 · 103 bar + 1.00 bar)(0.215 cm3)(10−3 L/ cm3) [(100 J/( bar · L)] = 1.78 kJ.
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